您的位置首页快问快答

什么是“二分法”?

什么是“二分法”?

的有关信息介绍如下:

什么是“二分法”?

一般地,对于函数f(x),如果存在实数c,当x=c时f(c)=0,那么把x=c叫做函数f(x)的零点。

解方程即要求f(x)的所有零点。

先找到a、b,使f(a),f(b)异号,说明在区间(a,b)内一定有零点,然后求f[(a+b)/2],

现在假设f(a)<0,f(b)>0,a①如果f[(a+b)/2]=0,该点就是零点,如果f[(a+b)/2]<0,则在区间((a+b)/2,b)内有零点,(a+b)/2=>a,从①开始继续使用中点函数值判断。如果f[(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,(a+b)/2=>b,从①开始继续使用中点函数值判断。这样就可以不断接近零点。通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。

①如果f[(a+b)/2]=0,该点就是零点,

如果f[(a+b)/2]<0,则在区间((a+b)/2,b)内有零点,(a+b)/2=>a,从①开始继续使用

中点函数值判断。

如果f[(a+b)/2]>0,则在区间(a,(a+b)/2)内有零点,(a+b)/2=>b,从①开始继续使用

中点函数值判断。

这样就可以不断接近零点。

通过每次把f(x)的零点所在小区间收缩一半的方法,使区间的两个端点逐步迫近函数的零点,以求得零点的近似值,这种方法叫做二分法。

就是是找函数的零点的范围。

先兆函数值大于,小于0的两个定义域里的自变量。

那么零点就在他们之间。

然后看着两个数的平均数时函数的因变量的符号。

用这样的方法找零点范围。因为算的时候涉及到平均值,所以叫二分法。