您的位置首页快问快答

几何布朗运动均值推导?

几何布朗运动均值推导?

的有关信息介绍如下:

几何布朗运动均值推导?

公式:dS/S=u* dt+e* o* sqrt(dt),是一个典型的一阶其次的微分方程,参考:高数总结

可知,同时对两边积分,左边积分变量是dS,右边是dt,得到

左边:lnS

右边:f(t)+C ,满足正态分布

lnS=f(t)+C

S=exp(f(t)+C)

u* dt+e* o* sqrt(dt),e~N(0,1)

f(t)=u*T+ (o* sqrt(dt)) *(∑ e );(o* sqrt(dt)),u*T,可以视为常数

相当于在普通布朗运动实现的基础上,多了一步S=exp(f(t)+C),是不是很眼熟?

几何布朗运动的公式是:St=S0*exp( x =f(t))

S为波动率,是一个系数:lnS=f(t)+C

S0为常数,有 St=S0*S