您的位置首页百科快答

晓雯音乐学校怎么样?

晓雯音乐学校怎么样?

的有关信息介绍如下:

晓雯音乐学校怎么样?

晓雯音乐学校是一所全国连锁音乐教育机构,从1989年起和日本YAMAHA合作,有二十年的办学历史,并在此基础上结合中国国情总结创新出一套系统、规范的音乐教育模式。她以普及音乐基础教育为使命,完全区别于培训部或家庭式教学,具有鲜明的特色和稳定的教学成果。“琴技是技巧,音乐素养是根本”是学校的教育方针。“晓雯”的品牌已遍及全国十三个省市,达六十所分校。

学校办学的十大特色

一、完全知识产权的《晓雯音乐教材》和系统规范的教学体系

二、科学系统的《晓雯音乐管理体系》

三、严格、专业的《FAT》《FTT》人力资源培训体系

四、与《晓雯音乐教材》同步的网上课堂---空中音乐教室

五、中国第四间达国际硬、软件标准的双排键教室

六、各类大小型音乐会为在校生提供展现自我的平台

七、提高班钢琴集体小课

八、提高班综合素养课

九、中音数码学院晓雯示范中心

十、YAMAHA专业舞台灯光音响

名家风采

吴晓雯---晓雯音乐学校校长

朱磊---著名双排键演奏家

历年大事记

1、 1989年9月28日成立,带着七名学生办起了小弄堂里的音乐教室。

2、 1990年4月22日,日本雅马哈株式会社驻中国代表山本吉身先生来温州参观我校。

3、 1990年9月25日在中日音乐交流会上日本演奏家藤木希实子与我校音乐基础班师生同台演出。

4、 1990年10月27日日本雅马哈株式会社向我校赠送系统教材和钢琴、电子琴等部分教具。

5、 1991年2月10日我校的五名学员赴上海参加华东地区雅马哈高级电子琴演奏交流联欢会。

6、 1991年8月12日,我校是我省唯一一个接受YAMAHA音乐振兴会业务指导的私立办学场所。

7、 1991年,1992年度我校学员吴婷婷、赵一等人喜获瑞安市“三独”比赛一等奖

8、 1993年3月23日,我校同日本YAMAHA株式会社,天津YAMAHA电子乐器有限公司,鹿城区教委联合举办的中日音乐交流演奏会在东南剧院隆重举行,由中川小姐领衔主演并大获成功。

9、 1994年9月19日由我校选送的七名选手在首届全国冰心奖少儿电子琴大赛中全部获奖,“冰心奖”发奖大会在人民堂举行,中央领导人雷洁琼为我校音乐基础班一等奖选手谢琼等颁奖。

10、 1995年2月14日美籍华人演奏家汇信权与我校百名小朋友联合表演电子琴大联奏

11、 1995年8月29日第二届全国“冰心艺术奖”电子琴大赛中由我校选出的11名选手全部获奖,徐依帆、谢寒、包艳慧获新作品创作优秀奖,谢琼获C组冠军,王陈凝获B组一等奖,尤子夜荣获双排键电子琴三等奖,管钿钿获二等奖并获《小小世界》新作品改编优秀奖、朱琪获二等奖、柳箫获二等奖、朱旭娟获二等奖。

12、 1995年度赵小洁获瑞安市“三独”比赛一等奖,该生97年获温州市首届音乐舞蹈大奖赛三等奖。

13、 1995年度,周盈盈荣获全国首届中小学电子琴比赛浙江省选拔赛三等奖,同年又获瑞安市“三独”比赛一等奖。

14、 1997年我校120人电子琴合奏被温州“新太阳杯”少儿优秀文艺节目汇演节目所选取。

15、 1997年4月2日原市长卢声亮、副市长陈莲莲、市领导马云博、市教委领导林和平等来我校视察指导。

16、 1998年11月29日YAMAHA(株)上海有限公司董事总经理小川恭士参观我校。

17、 1998年11月29日日本著名作曲、演奏家平沼由利参加我校“98希望之声音乐会”并与我校师生合影留念。

18、 1999年9月28日“晓音”十周年庆典音乐会在温州师范学院育英大礼堂举行,邀请了市委领导和音乐界的前辈,以及来自日本、香港、台湾、北京、上海、天津、杭州等地的友人和专家。参加演出的学员有300余人,圆满成功的音乐会得到了温州日报、温州晚报、温州电视台、教育经济电视台、温州有线电视台、鹿城有线电视台、温州人杂志社等新闻单位的报道,得到上级领导和社会各界的一致好评!为我校学员提供了一次学习、欣赏和锻炼的机会。

19、 1999年主办“晓音之声”永嘉篇音乐会,成立晓雯音乐永嘉学校。

20、 2000年5月日本著名双排键演奏家富冈泰也来我校参观指导。

21、 2000年6月10日我校的陈金居上,在全国双排键electone大赛(决赛)上夺得了大赛第二名。

22、 2000年7月主办“晓音之声” 平阳篇音乐会,成立晓雯音乐平阳学校。

23、 2000年7月7月(日本双排键专家)池谷昭彦在天津办事处主任张四新和营业课科长张永生先生的陪同下来我校参观。

24、 2000年9月主办“晓音之声” 瓯北篇音乐会,成立晓雯音乐瓯北学校。

25、 2001年3月 24日天津YAMAHA总经理久米和日本双排键专家池谷先生来我校参观指导,对我校的教学体系、师资、研修培训体系、管理软件等给予了高度赞扬。

26、 2001年5月6日波兰著名钢琴家彼奥特·福克来我校参观访问。

27、 2001年5月24日日本双排键著名演奏家一言真也在我校老朋友佐滕的陪同下来我校研修指导。

28、 2001年6月著名影星释小龙与我校部分学员同台演出后合影留念。

29、 2001年我国著名歌唱家兼北京华宇添艺术学校校长邓玉华教授来我校参观访问。

30、 2001年7月主办“晓音之声” 宜山篇音乐会,成立晓雯音乐宜山学校。

31、 2001年8月主办“晓音之声” 水头篇音乐会,成立晓雯音乐水头学校。

32、 2001年9月在浙江台州主办“晓音之声” 椒江篇音乐会,成立晓雯音乐椒江学校。

33、 2001年,我校首次参加浙江省教育厅主办的A、B级加分测试,钢琴、电子琴类温州地区共通过4名,我校占2名。

34、 2002年,我国著名钢琴家孔祥东、吴纯、小提琴家俞丽拿来我校参观指导。

35、 2002年我校主办了孔祥东“2002大型”钢琴讲座。

36、 2002年6月24日日本著名双排键演奏家富冈泰也在上海知音琴行陈青云的陪同下来我校参观访问,并为我校学员举办了双排键大型音乐会。

37、 2002年,我校参加浙江省教育厅主办的A、B级加分测试;钢琴、电子琴类温州地区共通过4名我校再夺2名。

38、 2003年夏季在和“非典”的战斗中诞生“空中音乐教室”,成为我总分校学员每周免费接受的一次网络课堂。

39、 2003年我校赵小洁、包戈同学分别以优异的成绩考入了上海音乐学院、中央音乐学院。

40、 2003年7月我国著名小提琴家盛中国先生来我校参观指导并参加我校主办的2003夏季“晓音之声”音乐会。

41、 2003年7月28日在浙江义乌主办“晓音之声” 通远篇音乐会,成立晓雯音乐通远学校。

42、 2003年8月中国著名双排键电子琴(电子管风琴)演奏家、上海音乐学院作曲指挥系双排键教研室主任、中国音协电子琴学会理事、上海音协电子琴学会副会长朱磊先生来我校参观交流。

43、 2003年9月我校“人力资源培训部”宣告成立,成为我校人才培养、提高的专门负责部门,为我校办学模式的全国性推广奠定了坚实的基础。

44、 2003年9月6日在台州市人民政府大礼堂举办晓雯音乐椒江学校成立二周年校庆音乐会。

45、 2003年9月7日我校专业音乐网站

开通。

46、 2003年9月13日在浙江温州主办“晓音之声” 西城篇音乐会,成立晓雯音乐西城学校。

47、 2003年9月21日在浙江温州仰义主办“晓音之声” 仰义篇音乐会,成立晓雯音乐仰义学校。

48、 2003年9月底在江西出版大厦主办“中国·浙江·温州模式幼少儿音乐教育推广会(筹)”、“江西·浙江琴童文化交流音乐会(筹)”。

49、 2003年10月13日参加由中共鹿城区委、鹿城人民政府主办的江心屿金秋休闲文化节活动,单独举办一场大型露天百人大合奏音乐会。

50、 2003年10月16日,国际钢琴大师亚历山大.巴拓夫思基为我校学员和温州部分琴童作经典音乐讲座,我校学员得到了大师亲自的指点。10月17日晚,大师又在其演出前来我校参观,和我校师生见面。

51、 2003年11月底,我校获悉我市将主办首届中国青少年演艺新人推选活动“红蜻蜓”杯浙江赛区选拔赛。作为我市历史悠久的音乐专业学校,我校义不容辞的选派了五名选手参加12月6日主办的钢琴、西洋器乐两组比赛,在温州赛区比赛中,我校四名选手分别获得金牌二名、银牌一名、优胜奖一名,在12月12日的浙江赛区比赛中,汇集了杭州、宁波、台州、丽水分赛场和我市分赛场的全部金、银、铜牌得主。但我校选手依靠扎实的基本功、娴熟的琴技,再一次技压群芳、高出一筹,分别以9.937、9.935、9.907的高分勇得钢琴少儿B组、西洋器乐少儿A组、B组全部三枚金牌。这三名选手分别是双排键学员:杨杨(钢琴金牌得主);双排键学员:潘金金;双排键学员:詹炜。她们将代表我校、我市、我省参加于2004年2月在北京主办的云集全国各地金牌得主的半决赛、决赛

“高楼大厦平地起”,正是由于这三名选手都具备扎实的童子功,(她们都是我校基础班毕业学员)才会有今天的成绩,赛场评委在赛后点评时也多次强调了这一点!!!

52、 2004年2月6日,我校三名学员杨杨、潘金金、詹炜参加了首届中国青少年演艺新人推选活动北京决赛,凭借实力再次勇得金牌。

53、 2004年2月21日,我校路桥、黄岩两所分校成功开办。

54、 2004年3月,我校选送了16名学员参加浙江省教育厅主办的A、B级加分测试,有14名学员顺利通过加分。

55、 2004年4月4日:2004年度“晓音之声”音乐会暨《晓雯音乐教材》启用发布会在奥林匹克大酒店三楼举行,本场音乐会是我校2004年度音乐会计划中的一部分,也是一场较高级的音乐会,主要由提高班学员参加,其中吴校长的学生占了较大的比例,既是为了检验教学成果、向家长汇报、也是为了锻炼学员、提高能力。同时我校还邀请了温州市鹿城区教育局、温州市鹿城区民办协会有关领导亲临会场;邀请了海南、山东两省有关嘉宾、领导亲临会场考察、观摩;所以这也是一场三省文化交流的音乐会。

音乐会节目形式有双排键电子琴独奏、钢琴独奏、合奏、单排键电子琴合奏、童声合唱等。

56、 2004年5月20日,中央电视台少儿频道举办的“瓯江春晓”大型拍摄活动在我市瑞安广电中心隆重举行开机仪式。此次大型拍摄活动的目的是为了进一步提高少儿音乐TV、器乐TV、舞蹈TV等节目的创作水平;丰富少儿电视荧屏,展现温州山山水水。受温州电视台委托,我市晓雯音乐学校选送了两个节目参加当晚的晚会,她们凭借扎实的音乐基础知识和音乐理解能力、娴熟的演奏技巧、为晚会带来了高潮;获得了阵阵掌声。一起同台演出的还有我市小荧星艺术学校。

57、 2004年7月1日,上陡门分校成立

58、 2004年8月26日,台风过后的温州去掉了往日的喧嚣,显得格外的清新,我校也迎来了来自美国加州Tustin音乐中心和Harmony Road音乐教育中心的两位校长。在参观交流之后,她们对我校“注重音乐基础教育”的教学理念和紧跟国际潮流的教学、管理模式大加赞赏,并签订了结对合作意向书,本着增进学校之间、两国之间文化交流的目的,今后将在音乐学术领域、教学领域、师生之间、音乐会等方面开展广泛、持久的交流和友好合作。我校每个班级的优秀学生和骨干教师今后将有机会到美国加州距离世界迪尼斯中心仅10分钟路程的Tustin音乐中心和Harmony Road音乐教育中心学习、参观、交流。

59、2005年5月份,吴晓雯校长获得在香港颁发的“教育成就奖”,全国只有二十名。

60、2005年7月2日“晓音之声”大型音乐会

本次音乐会到会嘉宾有上海音乐学院朱磊教授,曾梦老师,天津音乐学院高继通教授。

60、2005年11月25日,日本演奏家高田和泉与我校学员同台演出。

61、2005年12月份,吴晓雯校长获得香港皇家博士学位。

62、2006年1月,晓雯音乐综合素养课教材面试,并向全国连锁教育机构推广使用。

63、2006年2月,晓雯音乐双排键教材面世。

64、2006年3月,我校首次主动出击,在南昌主办晓雯音乐品牌推介会,圆满成功!

65、2006年4月,我校在温州总部王朝大酒店主办晓雯音乐品牌推介会,又获成功!

66、2006年5月,由我校演出部组织的“TOMSON”杯超级琴童PK赛开始比赛,首轮报名超过5000人。

67、2006年3月,我校学员赵伟强以全国第三名的佳绩,通过上海音乐学院的专业考试。

68、2007年8月9日福鼎分校参加第七届"闽南风 海峡情”两岸青少年文化交流文艺汇演。分校长高世峰任本场晚会的执行导演、舞台总监。8月10日晚,学员和台湾、金门、厦门、漳州、泉州等地的青少年进行互动联欢。本次系列活动、汇演是"闽南风 海峡情”开展以来最隆重的一次,得到了福建团省委吴立官副书记、宁德团市委谢再春书记等领导的高度评价。

学校还可以!

A Realtime and Direct-Touch Interaction System for the

3D Cultural Artifact Exhibition

Wataru Wakita1, Katsuhito Akahane2, Masaharu Isshiki3, and Hiromi T. Tanaka1

1 Department of Human and Computer Intelligence, College of Information Science and

Engineering, Ritsumeikan University, Kusatsu, Japan

{wakita,hiromi}@cv.ci.ritsumei.ac.jp

2 Precision and Intelligence Lab, Tokyo Institute of Technology, Yokohama, Japan

kakahane@hi.pi.titech.ac.jp

3 Department of Electrical and Electronic Engineering and Computer Science,

Ehime University, Matsuyama, Japan

isshiki@cs.ehime-u.ac.jp

Abstract. We propose a realtime and direct-touch interaction system for 3D

cultural artifact exhibition based on a texture-based haptic rendering technique.

In the field of digital archive, it is important to archive and exhibit the cultural

artifact at the high-definition. To archive the shape, color and texture of the

cultural artifact, it is important to archive and represent not only visual effect

but haptic impression. Therefore, multimodal digital archiving, realtime

multisensory rendering, and intuitive and immersive exhibition system are

necessary. Therefore, we develop a realtime and direct-touch interaction system

for the 3D cultural artifact exhibition based on a texture-based haptic rendering

technique. In our system, the viewer can directly touch a stereoscopic vision of

3D digital archived cultural artifact with the string-based and scalable haptic

interface device "SPIDAR" and vibration motor.

Keywords: Digital Museum, Virtual Reality, Computer Graphics, Haptics.

1 Introduction

We are working on a digital museum project of the "Gion Festival in Kyoto" , .

The floats in the "Gion Festival in Kyoto" are decorated with various accessories.

Therefore, the floats are described as a "Moving Museum". In this digital museum

project, in particular, we are working on a digital archiving of the "Gion Festival in

Kyoto" by multisensory information such as the visual sense and the haptic sense.

In the field of digital archive, it is important to archive and exhibit the cultural

artifact at the high-definition. To archive the shape, color and texture of the cultural

artifact, it is important to archive and represent not only visual effect but haptic

impression. To exhibit the digital archived 3D model naturally, multisensory digital

archiving and interactive, intuitive and immersive exhibition system is necessary.

198 W. Wakita et al.

Moreover, to reduce the graphic and haptic rendering cost, a realtime rendering is

necessary. Generally, to achieve the realtime rendering in graphic process, at least 30-

60 Hz update rate is necessary. In haptic process, to represent the soft objects, at least

300 Hz update rate is necessary, and to represent the hard objects, at least 10 kHz

update rate is necessary while considering the graphic rendering cost.

Therefore, we develop a realtime and direct-touch interaction system for the 3D

cultural artifact exhibition with the string-based and scalable haptic interface device

"SPIDAR" and vibration motors.

2 Related Work

Recently, various haptic rendering devices have been developed, and various haptic

rendering techniques to touch the virtual object have been proposed. The penaltybased

haptic rendering method , is a basic approaches to represent the polygon

wall, has several problems such as passing through, discontinuous force and vibration.

To solve these problems, Zilles et al. proposed a constraints-based God-object method

. However, their method has the same problems such as passing through,

discontinuous force and vibration in haptic rendering for the high-definition virtual

object. On the other hand, several texture-based haptic rendering techniques have

proposed to represent the asperity of the interior of the polygon according to the 2D

image , , , . In our previous work, we proposed a texture-based haptic

rendering technique for the pseudo-roughness on the surface of the low-polygon

virtual object using height map and normal map, and we developed a material system

under haptic rendering for pseudo-roughness on the low-polygon object surface .

In this system, a difference of the haptic impression is represented by changing

magnitude and/or direction of the reaction force dynamically according to the pixel

value of the object surface which mapped the haptic texture which converted surface

height, stiffness and friction into the 2D image. Moreover, we have proposed a

realtime haptic rendering technique for representation of the high-definition model

surface using the low-polygon model, distance map and normal map . In this

approach, the reaction force is calculated according to the pixel value of the low

polygon model surface which mapped the haptic texture which converted the

geometric difference of the high-polygon model and the low-polygon model into the

2D image. However, these techniques are not based on the measurement. To represent

the high-definition virtual object, it is necessary to model the virtual object based on

the measurement. The same can be said for digital archive. Therefore, in our previous

work, we captured the surface structure of the materials in the real world with OGM

(Optical Gyro Measuring Machine) and generated the normal map which has

surface asperity information. Then we modeled the tactile sense by vibration signals

based on normal map, and we developed a haptic rendering system for a 3D noh-cloth

model based on the measurement with the string-based haptic interface device

SPIDAR and vibration speakers .

A Realtime and Direct-Touch Interaction System 199

2.1 Multisensory System of the Cultural Heritage

As related work of the cultural heritage, Christou et al. proposed a versatile

large-scale multimodal VR system for cultural heritage visualization. Their exhibition

system is the Cave-like multimodal system, and their system enables haptic

interaction with two haptic arm. On the other hand, Carrozzino et al. proposed a

large-scale multimodal and immersive VR system. Their exhibition system is the

Cave-like multimodal system, and their system enables haptic interaction with

exoskeleton haptic arm. These works enables to represent the shape, color, and texture

of the cultural artifact with the haptic device. However, these systems are impossible

to directly touch to the digital archived model. To exhibit the digital archived 3D

model naturally, a direct touchable immersive exhibition system is necessary.

2.2 Direct-Touchable Multisensory System

As related work of the direct-touchable multisensory system, Inami et al. and

Arsenault et al. , proposed a system with half mirror and haptic arm device.

Vallino et al. , Bianchi et al. , and Sandor et al. , proposed a AR/MR

system with HMD and haptic arm device. Brederson et al. and Ikits et al. ,

proposed a system with 3D projector and haptic arm device. These system

enables direct-touch for the graphic models with the haptic arm device. However, it is

difficult to touch the large-scale cultural artifact because there is a limitation over the

range of arm movement. On the other hand, Yoshida et al. proposed RePro3D

with vibration motor and retro-reflective projection technology. However, it is

impossible to represent the kinematic sense.

To exhibit the cultural artifact naturally, a direct-touchable exhibition interface

corresponding to the size of the cultural artifacts is necessary (see Figure 1).

Therefore, in our work, we use the string-based and scalable haptic interface device

"SPIDAR" and vibration motors.

Fig. 1. Direct-touchable multisensory exhibition interface corresponding to the size of the

cultural artifacts with scalable haptic interface device SPIDAR

200 W. Wakita et al.

3 Direct-Touchable Multisensory Exhibition System

Figure 2 shows a direct-touch able multisensory exhibition system with SPIDAR.

SPIDAR is on top of a screen. SPIDAR has ability to control the 3DOF position and

to present the 3DOF forces. A grip part is attached to 4 strings from 4 motors with an

encoder. The strings length got from each encoder's data is used to measure the grip's

position. The strings tension from each motor is displayed the feedback forces.

Fig. 2. Direct-touchable multisensory exhibition system with SPIDAR

Users attach the vibration motors on fingers, users can feel kinematic sense and

tactile sense moving the fingar tip and tracing the stereoscopic 3D virtual objects on

the screen. Reaction force and vibration signal is calculated with the finger's move

direction vector and surface asperity of collision point. A vibration signal is converted

to voltage by D/A converter.

3.1 Direct-Touch Interaction for the Stereoscopic Vision

To touch the stereoscopic objects naturally with a SPIDAR, a grip position in the

device space is required to match the virtual space according to the camera space.

To represent the 3D shape with SPIDAR, firstly, the intersection is detected

between the finger tip and 3D model surface on the screen. Secondly, if they are

crossed in the intersection detection and have the possibility of contact, the polygon

height is changed according to the pixel value of the height map in relation to

intersection point and the polygon is replicated , (see Figure 3).

A Realtime and Direct-Touch Interaction System 201

Fig. 3. Direct-touch interaction for the 3D model based on our texture-based haptc rendering

technique

Finally, the intersection is detected again between the finger tip and a copy

polygon, and the reaction force is calculated according to the penetration depth and

the pixel value of the friction map and stiffness map . Our haptic rendering

technique is based on a constraint-based God-object method .

In our system, we display the vibration signal transform to voltage and input to

vibration motors. The signal is calculated by the inner product finger tracing direction

and the normal vector in the contact point of normal map.

4 Digital Archive

4.1 Graphic Modeling

We used the laser range scanner "VIVID" for the measurement of the shape, and we

used a high-resolution multiband imaging camera for measurement of the color and

spectral reflectance.

Figure 4, 5 shows measurement data of the woven cultural artifact "Hirashaji

Houou Monyou Shishu" of "Fune-hoko" of "Gion Festival in Kyoto". Figure 4 shows

a height image data (height map) that was generated from measured range data by the

laser range scanner, and Figure 5 shows a color image data (color map) by the

multiband camera.

Fig. 4. Measured height image data of the "Hirashaji Houou Monyou Shishu"

202 W. Wakita et al.

Fig. 5. Measured color image data of the "Hirashaji Houou Monyou Shishu"

The measured range data have 612,522 (1193x512) vertices, and measured color

image data have 73,300,500 (13650x5370) pixels. To reduce the graphic rendering

cost, we reduced a 3D polygon model and we mapped a measured 2D color map to a

reduced 3D polygon model (see Figure 6).

Fig. 6. 3D Digital Archived Model of the "Hirashaji Houou Monyou Shishu"

4.2 Haptic Modeling

To reduce the haptic rendering cost, we used our texture-based haptic modeling and

rendering technique . Firstly, we created a normal map from height map (see

Figure 7).

Fig. 7. Height map (left) and Normal map(right) of the "Hirashaji Houou Monyou Shishu"

This normal map is used to represent the surface gradient, where the RGB values

correspond to the XYZ coordinates of the normal vector. The height map is used to

represent the surface height, where the surface height is changed according to the

grayscale value (white is high and black is low elevation). We mapped these maps to

low-polygon model which is used for the haptic rendering, and is not used for the

graphic rendering.

A Realtime and Direct-Touch Interaction System 203

5 Results

We developed a direct-touch interaction system for the digital archived 3D cultural

artifact exhibition (see Figure 8). Our system is composed of a display system and an

3D application. A display system consists of a graphic part and haptic part. In graphic

part, we used a rear projector screen (1000x750 mm) and the stereoscopic projector

"DepthQ HD". The stereoscopic vision is projected to the bottom projector screen

with a mirror. A haptic part is on top of a projector screen, and at one with a graphic

part. In haptic part, we used SPIDAR and vibration motors. We used two 2.33 GHz

Intel(R) Xeon(R) CPU E5410, NVIDIA Quadro FX 580 graphics card with 512MB

video memory, 16GB RAM, Windows VISTA 64bit, and NVIDIA 3D Vision. The

graphic process is 120 Hz update rate, and haptic process is 1 kHz update rate.

Fig. 8. Realtime and direct-touch interaction system for the digital archived 3D cultural artifact

exhibition

204 W. Wakita et al.

6 Conclusion and Future Work

We developed a realtime and direct-touch interaction system for the 3D cultural

artifact exhibition with the string-based and scalable haptic interface device

"SPIDAR" and vibration motors. Specifically, firstly we archived the cultural artifact

"Tenmizuhiki" tapestries "Hirashaji Houou Monyou Shishu" of "Fune-hoko" of "Gion

Festival in Kyoto". Secondly, we developed a exhibition system with the stereoscopic

projector, SPIDAR and vibration motors based on our texture-based technique.

However, in our system, the stiffness properties are not based on the measurement

data. Therefore, we plan to measure various materials in the real world.

Acknowledgments. This research has been conducted partly by the support of the

Digital Museum Project in the Ministry of Education, Sports, Science and

Technology, Japan. We would like to thank the Gion-Matsuri Fune-hoko Preservation

Society, a generous collaborator of this project.

References

1. Tanaka, H.T., Yano, K., Hachimura, K., Nishiura, T., Choi, W., Fukumori, T., Furukawa,

K., Wakita, W., Tsuchida, M., Saiwaki, N.: Digital Archiving of the World Intangible

Cultural heritage “Gion Festival in Kyoto”: Reproduction of “Fune-boko” Float of the

Gion Festival Parade in “Virtual Kyoto”. In: Proceedings of the ASIAGRAPH 2010,

Shanghai, China (2010)

2. Tanaka, H.T., Hachimura, K., Yano, K., Tanaka, S., Furukawa, K., Nishiura, T., Tsutida,

M., Choi, W., Wakita, W.: Multimodal Digital Archiving and Reproduction of the World

Cultural Heritage “Gion Festival in Kyoto”. In: Proceedings of the ACM SIGGRAPH

Sponsored 9th International Conference on VR Continuum and Its Applications in Industry

(VRCAI 2010), COEX, Seoul, Korea (2010)

3. Sato, M.: Development of string-based force display: Spidar. In: Proceedings of the 8th

International Conference on Virtual Systems and Multi Media (VSMM 2002), Gyeongju,

Korea (2002)

4. Mark, W.R., Randolph, S.C., Finch, M., Verth, J.M.V., Taylor II, R.M.: Adding Force

Feedback to Graphics Systems: Issues and Solutions. In: Proceedings of the SIGGRAPH

1996, New Orleans, U.S.A, pp. 447–452 (1996)

5. Massie, T.H., Salisburg, J.K.: The PHANTOM Haptic Interface: A Device for Probing

Virtual Objects. In: Proceedings of the ASME Winter Annual Meeting, Symposium on

Haptic Interfaces for Virtual Environment and Teleoperator Systems, DSC, Chicago,

U.S.A, vol. 55(1), pp. 295–301 (1994)

6. Zilles, C., Salisbury, K.: A constraint-based God-object method for haptic display. In:

Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems,

Pittsburgh, U.S.A, pp. 146–151 (1995)

7. Stanney, K.: Haptic Rendering In Virtual Environments. Handbook of Virtual

Environments. In: Basdogan, C., Srinivasan, M.A. (eds.), pp. 117–134. Lawrence Erlbaum

Associates, Inc., London (2001)

8. Theoktisto, V., Fairén, M., Navazo, I., Moncĺus, E.: Rendering detailed haptic textures. In:

Proceeding of the 2nd Workshop in Virtual Reality Interactions and Physical Simulations

(VRIPHYS 2005), Pisa, Italy, pp. 16–23 (2005)

A Realtime and Direct-Touch Interaction System 205

9. Wakita, W., Ido, S.: A Material System under Haptic Rendering for Pseudo-Roughness.

IEICE Trans. Inf. & Syst (Japanese Edition) J91-D(8), 2061–2070 (2008)

10. Wakita, W., Ido, S.: A Haptic Rendering for High Polygon Model Using Distance Map

and Normal Map. IPSJ Journal 49(7), 2509–2517 (2008)

11. Ozaki, R., Nishiwaki, Y., Takeda, Y.: Weave pattern modeling of silk-like fabrics from

multi-illuminated HDR image analysis. Transactions of the Virtual Reality Society of

Japan 14, 315–324 (2009)

12. Nomura, K., Yin, X., Sakaguchi, Y., Tanaka, H.: Modeling system of tactile feeling based

on photometoric images analysis. IEICE Trans. Inf. & Syst (Japanese Edition) J93-D(10),

2326–2329 (2010)

13. Christou, C., Angus, C., Celine Loscos, C., Dettori, A., Roussou, M.: A Versatile Large-

Scale Multimodal VR System for Cultural Heritage Visualization. In: Proceeding of the

ACM symposium on Virtual Reality Software and Technology (VRST 2006), Limassol,

Cyprus, pp. 133–140 (2006)

14. Carrozzino, M., Bergamasco, M.: Beyond virtual museums: Experiencing immersive

virtual reality in real museums. Journal of Cultural Heritage 11(4), 452–458 (2010)

15. Inami, M., Kawakami, N., Sekiguchi, D., Yanagida, Y., Maeda, T., Tachi, S.: Visuo-

Haptic Display Using Head-Mounted Projector. In: Proceedings of the IEEE Virtual

Reality 2000, pp. 233–240 (2000)

16. Arsenault, R., Ware, C.: Eye-hand co-ordination with force feedback. In: Proceedings of

the ACM Conferernce on Human Factors in Computing Systems (CHI 2000), pp. 408–414

(2000)

17. Arsenault, R., Ware, C.: The Importance of Stereo and Eye Coupled Perspective for Eye-

Hand Coordination in Fish Tank VR. Presence 13(5), 549–559 (2004)

18. Vallino, J., Brown, C.: Haptics in augmented reality. In: Proceedings of the IEEE. Int’l

Conf. on Multimedia Computing and Systems (ICMCS), vol. 1, pp. 195–200 (1999)

19. Bianchi, G., Knoerlein, B., Szekely, G., Harders, M.: High precision augmented reality

haptics. In: Proceedings of EuroHaptics, pp. 169–178 (2006)

20. Sandor, C., Uchiyama, S., Yamamoto, H.: Visuo-Haptic Systems: Half-Mirrors

Considered Harmful. In: Proceedings of the WHC 2007, pp. 292–297 (2007)

21. Sandor, C., Kuroki, T., Uchiyama, S., Yamamoto, H.: Exploring Visuo-Haptic Mixed

Reality. Technical Report PRMU 2006-199 IEICE, Tokyo, Japan, vol. 106, pp. 31–36

(2007)

22. Brederson, J.D., Ikits, M., Johnson, C., Hansen, C.: In: Proceedings of the PHANToM

Users Group Workshop, Aspen, CO, pp. 46–49 (2000)

23. Ikits, M., Hansen, C., Johnson, C.: A Comprehensive Calibration and Registration

Procedure for the Visual Haptic Workbench. In: Proceedings of the Eurographics

Workshop on Virtual Environments, Zurich, Switzerland, pp. 247–254 (2003)

24. Ikits, M., Brederson, J.D.: In: Hansen, C., Johnson, C. (eds.) Visualization Handbook, pp.

431–447. Academic Press, London (2004)

25. Yoshida, T., Kamuro, S., Minamizawa, K., Nii, H., Tachi, S.: RePro3D: Full-Parallax 3D

Display Using Retro-Reflective Projection Technology. In: Proceedings of the ACM

SIGGRAPH 2010 Emerging Technologies, Los Angeles, California (2010)

26. Wakita, W., Murakami, K., Ido, S.: Development of a Texture-Based Haptic Modeling

System. IEICE Trans. Inf. & Syst. (Japanese Edition) J91-D(12), 2773–2780 (2008

不错 你可以去

还是不错的