答一答:有若干个数,第一个数记为$a_{1}$,第$2$个数记为$a_{2}$,第$3$个数记为$a_{3}\ldots $第$n$个数记为$a_{n}$,若$a_{1}=-\dfrac{1}{2}$,$a_{n}=\dfrac{1}{1-a_{n-1}}(n\geqslant 2$,$n$为整数)求$a_{2}$,$a_{3}$,$a_{2006}$.
的有关信息介绍如下:$\because a_{1}=-\dfrac{1}{2}$;
$\therefore a_{2}=\dfrac{1}{1-\left(-\dfrac{1}{2}\right)}=\dfrac{2}{3}$;
$a_{3}=\dfrac{1}{1-\dfrac{2}{3}}=3$,
$\ldots$
$-\dfrac{1}{2}$,$\dfrac{2}{3}$,$3$依次循环,
又$\because 2006\div 3=668\ldots 2$,
$\therefore a_{2006}=\dfrac{2}{3}$.